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We consider the problem of the distribution of a specified number of measur- 
ments on a given interval, ensuring the least variance of the estimate of one 

of the parameters linearly related with the function being measured. Assuming 
a normal distribution law for the measurement errors, we derive equations des- 
cribing necessary extremum conditions for the corresponding variance. Using 
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these equations we analyze the case of optimal disposition of the measurements 
at the ends of an interval. We investigate in more detail the case of parabolic 
regression, for which we establish the nature and the number of optimal points. 

One of the peculiarities of the problem of optimal spacing of observations is 
connected with the fact that it arose as a result of applying the methods of 

mathematical statistics, but its resolution requires us to bring in other branches 
of mathematics. Thus, for examole, in [l] a bound on the maximum numer of 
optimal (with respect to the variance of the estimate of some parameter) obser- 
vation instants was established by methods of mathematical analysis, in ~23 it 

was shown with the aid of linear programing theory that the number of optimal 
points with different vector-gradients of the function being measured with res- 
pect to the parameters being estimated does not exceed the total number of 

parameters being determined. This proposition is proved under an essential 
condition on the admissibility of any noninteger Values of the weighting coef- 
ficients (i. e. on the continuality of their values) with the single requirement 

that the sum of these coefficients equal the total number of measurements . 
The first investigation of this question was apparently carried out in [3] wherein 
the stated problem was considered for two parameters under the assumption that 

a~arbitraTity large Rumber of meas~ements can be made at a point. Papers 

[4, 51, using the results of [Z], examined the problem of the simultaneous choice 
of an optimal strategy and of the composition of the measurements under cer- 

tain assumptions on the nature of the correlation between them. The assertions 

and algorithms presented in these papers are valid, strictly speaking, under the 
condition that the weighting coefficient values are continual, i.e. at a suffici- 

ently large composition of meas~e~~ents. The general problem of abservation 

was investigated in [6] from the viewpoint of Pontriagin’s maximum principle 
as it applies to systems of linear differential equations; the measurement pro- 
cess is interpreted as a control process with specified constraints. Below, under 

the assumptions in [I], we look at certain questions connected with the problem 
of an optimal disposition of the meas~ements without the condition on the con- 
tinuality of the values of the weighting coefficients. Here, however, we do not 

pose the problem of constructing a computation algorithm, therefore, the derived 
equations for the necessary conditions are not supplemented by conditions of 
sufficiency. These equations are used for obtaining certain results analytically ; 
in particular, they allow a sufficiently detailed investigation of the parabolic 
regression case, The existence of the so-called ballast instants of meas~ements, 
i. e. those not leading to a lessening of the a pr i or i variance of some para- 

meter, is proved for this case. We show that in the given case these instants 
alternate with the optimal instants of measurements. 

1. Equatione for the optimal and the ballast instant-8 of mea- 
surements, We assume that the linear dependency 

m 

exists between the function y (t) being measured and the parameters zr,..., Xm being 

determined. Here the fi (t) are known time functions which are assumed to be conti- 
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nuously differentiable on a specified interval [t,, T] wherein we seek the optimal 
disposition of a specified number iV of measurements. If we assume that independent 
measurements of function y (t) are made at the instants tr, . . . , tN and that here the 
error at each measurement is distributed on a normal law, then the correlation matrix 
of the estimates of parameters xl,... , zm found by the method of greatest likelihood, 

has the form 

In this expression we have assumed also that mean and the variance of the error equal 

zero and unity, respectively. 
We consider the problem of minimizing the variance of the estimate of some para- 

meter Xi, i.e. the diagonal element Kii of matrix K, being a function of tl,..., t,y. 
Let us find an expression for the partial derivatives of Kii with respect to each of the 

variables tl,. . . , tN. From relation (1.1) we have 

whence it follows that 

Further, since 

ac 
i 1 xj qr 

= acg, z fp’ (tj) fr (tj) + fq Ctj) fP’ (tj) ati 
we have m 

aKii -= 
atj - 2 2 fq’ (tj) Kqi $ fq (tj) Kgi (I.21 

9=1 cl=1 

Here and later, as needed, we assume det C # 0. 
Thus, the necessary condition for the minimum of Kii are given by the equations (at 

least, they are at the instants tj E (t,, 2’)) 

5 fa’(G> Kqi i fq (tj> Kqi = 0 
ci=l 4=1 

This system of equations separates into two subsystems 

; f,’ (tj) G/i 7 0 
r+1 

(1.3) 

5 fq (tj) Kqi -= 0 (1.4) 
0 =I 

We note that Eqs.(l. 3) and (1.4) are obtained by replacing the ith row of matrix C of 

(1.1) by the rows of {f,’ (t,J, . . . . f,,’ (ti);. and (fl (tj),..., f,,,. (t,j)} ,respectively, 
and by equating the determinants of the matrices obtained to zero. 

Let us show that the solution of subsystem (1.4) does not contain optimal instants, but 
determines those instants (we call them ballast instants) which correspond to measure- 

ments not influencing the magnitude of the variance of the estimate of parameter a$. 
In accordance with (1.1) and (1.4) we have 
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(1.5) 

Here Cjh*, an element of a matrix c”, is obtained by eliminating in element Cj, of 

matrix C the terms corresponding to instants which satisfy equality (1 4) Obviously, 

det C* = det C. Relations (1.5) can be considered as equations in the quantities 
Kj. (j = I,..., m). Consequently, if matrix C* is nonsingular, which corresponds to 

adopting the condition det C + 0 (here the number of ballast points should not exceed 
N - m) , then the quantity K i i does not depend on the ballast instants of measurements. 

We have thus proved the following assertions. 

Theorem 1. The measurement instants satisfying condition (1.4) do not influence 

the magnitude of the variance of the estimate of the corresponding parameter. Under 

the condition det C # 0 the number of such instants does not exceed N - m. 
Theorem 2. The optimal measurement instants (situated in the interval (t,, T) 

and minimizing the variance of the estimate of the corresponding parameter) are deter- 

mined by relations (1.3). 
We note that Eqs. (1.4) for the ballast instants can be derived in another way. Suppose 

that before the measurement there exists the correlation martix K; after measurement 

the correlation matrix will be 

K, = K - (1 + f,T Kf,)-lKf,f/K, f, z 
f! (t*) 

n I 
: 

?rn (t*) 
where t* is a measurement instant such that m 

(K+)ii = Kii - (1 + f*TKf,)-“J”, J = xK,jfj (t*) 
i=l 

Hence it follows that t* is a ballast instant under the condition .7 = 0 . This condition 

is embraced by Eqs. (1.4). 
Below we present examples of the application of the relations obtained, allowing us 

to determine the nature of the optimal disposition of the measurement instants in a 
number of cases. 

2. C6rtrin oonditlonr for the optimal dirpoaition of mo&#ure- 
ments at the and8 of (I specified interval. 

E xa m p le 1 _ We consider at first the case m = 2, i. e. when the function to be 

measured and the parameters to be determined are connected by the relation y (t) = 
rlfl (t) + z& (t). Here the previous assumptions relative to functions fi (t), f~ (t) and to 
the error in the measurement of y (t) are preserved. The following assertion is valid. 

If 
[fL1 (t)l’ [V (t)l’ < 0 (2.1) 

on the interval [to, Tj , then the only optimal points for the minimization of the variance 
of any of the two parameters zi, za are the ends of the interval. 

The proof relies directly on the application of Eqs. (1.3) which in the given case have 
the form 

fi (tk) 5 fa2 (ti) - f2* (t& i fl (ti) fs tti) = O7 k-l,..., N (2.2) 

i=l G=l 

Having noted that as a consequence of inequality (2.1) each of the functions fl’(t), fl (t), 
fz’ (t) , fz (t) is sign-definite, this expression can be rewritten as 
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According to inequality (2.1) the fraction within braces is negative for any k = 1,...,N, 

consequently, (2.2) does not have a solution for any ti E [to, T] whatsoever. Hence it 
follows that the optimal disposition of the measurements is at the ends of the interval. 
Analogous sufficient conditions can be formulated for an arbitrary m ; however, it is 

very cumbersome to write them in general form. 

Example 2. Let us consider these conditions further for m = 3 and show that the 

following assertion is valid. If 

(2.3) 

on the interval [to, 2’1 , then there are three distinct optimal points in this interval! and 

two of them coincide with the ends of the interval. 

Using for the proof the relation between the function to be measuredand the parame- 
ters to be determined Y (r) = m& (1) + zzfi (t) + z3f9 (t), we write out relations (1. 3). 

We obtain 
fl’ (t,) Q,, + f2’ (t,) Q1, + fa’ (t,) Q1, = 0 (k = 1,. . ., N) (2.4) 

i=l i--l i=l i=l 

N N N N 

Q1, -7 2 f, ($1 f (t ) 2 i ~ f, (t,) f, (tin - :‘~ f,2 (ti) ~ f, (tin f3 (ii) 

i=l i=l i:l i=l 

To determine the sign of Q~% , with due regard to inequality (2.3) we represent Q12 as 

the double sum N 

Here the derivative [fi (t) / /a (t)]’ is taken at some point ti>, tl 4 ttf < tj. The same’ 
refers also to the derivative [fz (t) / f8 (t)]‘, but, of course, the point at which it is com- 
puted can be another one. 

According to inequality (2. 3) the function [fl (t) / fs (t)]’ [f~ (t) / fs (t)]’ retains its sign 
on the interval [to, T], therefore, 

Analogously we can determine that 

(2.5) 

(2.6) 
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Dividing the left-hand side of Eq. (2.4) by f,’ (tk) and differentiating the expression 
obtained with respect to tk, we find 

for any tk E [t,,, T], since according to (2.3),(2.5), (2.6). 

In the derivation of this equality it was taken into account that 

We note that during the differentiation Qll, Qiz, Q13 can be considered as constant 
coefficients. In fact, if we assume that the optimal instants tl,..., tN have been found, 
then at least some of them should be zeros of the function 

f2’ (4 f3’ PI 

F (t) = Qll + Q12 fl- (tJ + Q13777j- 

To estimate their number we can make use of differentiation of function F (tj . Thus, 

under the assumption that an optimal disposition exists, we find that Eq. (2.4) determined 
only one optimal instant inside the interval [to, T]. Consequently, the other two instants 
prove to be to and T. 

3. The end8 of the interval for an optimal 8prcing of measure- 
mentc in the cane of parabolic regreaalon. Let us examine the applica- 
tion of the relations obtained above to the problem of optimal spacing of measurements 
for the case when the function y (t) to be measured and the parameters to be determined 

are related by y(t) = Gp + 5p + . . . + 5,Pm 

Here uO,. . . , urn are positive integers ( uO = 0 is admissible), where zzO < 1~1 ( 

. . . < llm. We assume that t, > 0. Suppose that the optimal measurement instants 

t, ) . . . tN minimizing the variance of the estimate of parameter ~j on the interval [to, 
T] have been found. Then the following assertion is valid. 

Theorem 3. There are m ballast points in the interval (t,, 2’). 
To prove this we denote m 8, N 

k=o 

where Qkj are the cofactors of elements Ckj of matrix C. We introduce a functional 
@ of the set of polynomials of the form m 

R (t) = 2 rilrtqLifuk 

i, Ir=o 

for which 

@{X(t)} = gi!(tJ (3.2) 
i=l 

Here &,.._, tN are the optimal measurement instants. Note that if polynomial 

R (t) > 0 for t F [t,, T] and has k <N roots in this intervals, then 

@ {K (t)} ‘,, 0. 
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Using appropriate determinants we can show that 

(3.3) 

Here L&s) is determined by expression (3.1). We need the next lemma in what is to 

follow. 

Lemma. If the polynomial 

u(t) = aotUO + . . . _t- aptup, t>o 

has k < p changes of sign at the points rr ,..., rk (ri >. O), then there exists a poly- 
nomial 

2ok (t) = b, (t)““o + . . . + O/p’( 

having precisely k real positive roots situated at those same points Q,..., rh, and among 

the exponents one of them may be missing, for example Uj. Here the (distinct) indices 

40,...9 qk are chosen from the sequence (0, I,..., p}, qi =+ i. 
To prove this we assume that the exponents uc10 ,...,uqk, among which we do not in- 

clude uj, have been determined and it remains only to find the coefficients b,l,...,b,_,, 

b. 3:1 ,..., bk. of polynomial U# (r) from the system of equations 

(3.4) 

We set coefficient bd equal to unity. Then, in order that this system have a solution, it 
is necessary and sufficient that matrices ..I 1 and .I- have equal rank, where 

Consequently, the indices qo,. . . , ‘Ik must be such that this solvability condition is ful- 
filled. Let us show that such a choice can always be made. In fact, the points ~,...,r~ 

are the roots of the polynomial U. (t), i. e. 

i=O 

We divide the system by aj and rewrite it in the form 

Since tr,..., +ck are distinct roots of polynomial u (t), the rank of the fundamental 

matrix of this system, considered relative to the coefficients a,,‘,...,~~ (aj’ = O), equals 
k. This means that we can find k columns of the fundamental matrix, from which we 
can set up a matrix A, with rank k. Since k < p - 1, we can find one more column, 
by adding which to matrix A, we obtain a matrix -4, with the same rank. Consequently, 
the exponents ZJ~~,...,U~~ can be chosen such that system (3.4) has a solution and a poly- 
nomial LUG (t) is defined, which by the Descartes theorem has no more than k real roots, 
. . 1. e. its roots are Tr,...,Tk ; this proves the lemma. 
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We now assume that polynomial Lj (t) has k < m changes of sign. Then, accor- 
ding to the lemma we can set up a polynomial 

Wjk (t) = Do + 2 t)pi, qi # j (i = 0, 1, . ., k) 

i=l 

such that the polynomial zj (t) = 0 L,(t) w$’ (t) is nonnegative on the interval [to, 
T] with an appropriate choice of the sign of constant 6. Therefore, the inequality 
@ { zj (t)} > 6 should be fulfilled since k < m < N. But it follows from (3.2) 
that @ { Ej (t)} = 0. The contradiction obtained shows that the number of changes of 

sign of polynomial Lj (Q equals m (for t > 0). 
From the course of the proof it is clear that L,; (t) cannot vanish at the ends of inter- 

val [t,, 7’1. Otherwise we could exclude the interval’s ends in functional (r, and prove, 
for example, that the polynomial Lj (t) has vz roots on an interval [t,, 7’1 . But then it 
would turn out that this polynomial has m + 1 roots on the whole positive semiaxis 

t > 0 , which contradicts the Descartes theorem. Thus, all the ballast points are found 
inside the measurement interval (to, T). 

We consider the application of Theorem 3 for : (a) u,, = 0, (b) ZZ,, > 0. In case (a), 
a corollary follows from the theorem proved. 

Corollary. When u0 = 0 there exist m + 1 distinct optimal measurement 
instants on the observation interval It,,, T] and, moreover, two of them correspond to 
the ends of this interval. these instants alternate with the ballast instants. 

In fact, since polynomial Lj(t) has m simple roots in interval (t,, T) , its derivative 
has not less than m - 1 simple roots in this same interval. But when ZQ, = 0 the 

polynomial L,‘(t) , by the Descartes theorem,vanishes not more than m - 1 times, 
therefore, all m - 1 roots are located inside interval (t,,, T). Hence it follows that 
only the measurement interval’s ends can be the two missing optimal points. On the 
basis of the results obtained we investigate the dependence of the accuracy of the esti- 
mates on the length of the measurement interval, which we call the base. In many ap- 
plied problems we can assume that the accuracy of the estimates increases as the base 

grows. In the given case this assumption has a rigorous proof. 
Theorem 4. For u,, = 0 and for an optimal disposition of the measurements the 

variance of the estimates decreases with lessening t, and (independently) with growth 

of T. 
To prove this we assume that the optimal measurement instants t,, tr,..., k-1, T 

have already been found for fixed values of f,, T. (According to the theorem’s corol- 

lary the boundary instants t,, 2” are also optimal). Assuming now the quantities t,,, T 
as beeing variable, while tl,. . . , t,_, are constants, we compute the differential of the 
variance of the estimate of some parameter xj. We obtain 

dKjj = - & [Lj(t,) Lj’(to)dt,+ Lj(T)Lj’(t)dT] (dt0<0, dl’>O) 

All roots of the polynomials L,(t) and Lj’ (t) lie to the left of T, therefore, when 
t = T these polynomials have the same sign, namely, the sign of the coefficient of the 
leading term. Consequently, Lj( T) L,’ (T) > 0. F rom the root distribution of poly- 

nomials L,(t) and Lj’ (t) it follows that 

sign Lj(t,) = (-1)” sign Lj (1’) sign Lj’ (to) = (-l)“-l sigll Li (T) 
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But for t = T , sign Lj(t) = sign L,j’ (t), therefore, Lj’(t,) Lj (t,) < 0 ; this proves 
the theorem. 

We now consider case (b): u,, > 0. 
Theorem 5. When u,, > 0 the accuracy of the estimates grows monotonically 

with increasing 2’. 

According to Theorem 3 the polynomial Lj (1) has rn simple roots in interval (to, 
T) and, consequently, the derivative Lj’ (t) has not less than m - 1 simple roots 
(lying between the roots of polynomial Lj(t)) . It can be shown that the mth positive 
root of Lj’(t), which should exist by the Descartes theorem, is smaller than the smallest 

positive root of polynomial L,(t). It is sufficient to consider that the’function Lj (t) 
also vanishes at point t = 0 , therefore, between the smallest positive root of polyno- 
mial Lj (t) and the point t = 0 , a point t = t* > 0, should exist where L,‘(t*) ~0. 
Thus, all positive roots of polynomials Lj (t) and Lj’(t) are less than T, so that when 

t = T both polynomials have the same sign, namely, the sign of the coefficient of the 

leading term. The subsequent arguments coincide with those in the proof of Theorem 4, 
but, in contrast to the case u,, = 0, the left end of the given interval may not be an 

optimal instant, as a consequence of which a decrease in the value of t,, does not always 
lead to a decrease in the variance of the estimates. 

To illustrate this circumstance we consider an example. Let 

y (4 = x0 th + gtU’, Ul > qj > 0, t E [to, Tl 

After two measurements the variance of the estimate of parameter z. in the optimal 
case is 

62 = 
22% + Ts% 1 1 + PI t 

(-%I% _ +I%)1 = F (PI _ %%)a ’ 7=7 (3.5) 

where 2 has been chosen such that for a specified T, expression (3.5) has a minimum. 
The equation for the extremal points of the function 

cp (r) = 
1 + P 

(r=L - r”“)S ’ O<r<l 

has the form 
(u1 - Uo) 72% + UrZUl-* - U. = 0 (3.6) 

According to the Descartes theorem this equation has only one positive root r*. Since 

the polynomial on the left-hand side of (3.6) is less than zero for r = 0 and greater 
than zero for z = 1 , then 0 < r* < 1. Namely, this value r* ensures the absolute 
minimum of function Q, (r) and, consequently, of 02, so that the optimal value of ? is 
7 = PT. 

Thus, if 7 > to, then one of the optimal measurement instants is located inside the 
interval [to, T] ; however,if to > 2, this instant coincides with the left end of this 

interval, Analogous conclusions hold for the case of any m, and the quantity 3 can 
depend also on the number of measurements. 

The author thanks T, hl. Eneev, F. L. Chernous’ko and Iu. S, Tumashev for attention to 
the work. 
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We examine controlled systems which are described by linear differential equa- 

tions with constant coefficients. We assume that the controlling forces are con- 

strained simultaneously in magnitude and in impulse. The time-optimal prob- 
lem for this case was investigated, for example, in [l - 31. 

Below we prove a theorem on 2n intervals of constancy of the optimal control. 
This theorem is analogous to the theorem on n intervals given in [4, 51, which 

holds when the control is bounded only in magnitude. 

1. Strtrmrnt of the problem, We consider a controlled system described 
by a linear matrix differential equation with real constant coefficients 

dxidt = Ax + bu (1.1) 

Here x = 11 xi 11, A. = 11 aij 11, b = II bi II are matrices of order (n X I), (n X n), 
(n X 1) ,respectively, n = 11 (t) is a scalar piecewise-continuous time function satis- 

fying simultaneously the two constraints 

1 u(t) I < hi! (‘\I = const > 0) (1.2) 

[I 01 u 7 dz<N (N = const > 0) (1.3) 
0 

Constraints (1.2) and (1.3) are simultaneously present, for example, when control is ef- 
fected by a jet thruster. Here inequality (1.2) corresponds to the boundedness of the fuel 
flow rate, while inequality (1.3) corresponds to the boundedness of the thruster’s propel- 
lant capacity. We denote by 9 the set of piecewise-continuous functions u (t) satisfy- 
ing simultaneously inequalities (1.2) and (1.3). We examine the time-optimal problem 
of taking system (1.1) to the origin by means of a control U (t) E Q. 


